Beschleunigung Berechnen Beispiel Essay

Unter Beschleunigung versteht man in der Physik die Änderung des Bewegungszustands eines Körpers. Als physikalische Größe ist die Beschleunigung die momentane zeitliche Änderungsrate der Geschwindigkeit. Sie ist eine vektorielle, also gerichtete Größe. Die Beschleunigung ist, neben dem Ort und der Geschwindigkeit, eine zentrale Größe in der Kinematik, einem Teilgebiet der Mechanik.

In der Umgangssprache bezeichnet Beschleunigung oft nur eine Steigerung des „Tempos“, also des Betrags der Geschwindigkeit. Im physikalischen Sinn ist aber jede Änderung einer Bewegung eine Beschleunigung, z. B. auch eine Abnahme des Geschwindigkeitsbetrages – wie ein Bremsvorgang – oder eine reine Richtungsänderung bei gleichbleibendem Geschwindigkeitsbetrag – wie bei einer Kurvenfahrt mit einem Auto.

Die SI-Einheit der Beschleunigung ist m/s2. Bei einer Beschleunigung von 1 m/s2 verändert sich die Geschwindigkeit pro Sekunde um 1 m/s. In den Geowissenschaften ist daneben auch die Einheit Gal für 0,01 m/s2 gebräuchlich.

Beschleunigungen kommen bei allen realen Bewegungsvorgängen, z. B. von Fahrzeugen, Flugzeugen oder Aufzügen, vor. Durch die mit ihnen auftretende Trägheitskraft wirken sie sich mehr oder weniger deutlich auf beförderte Menschen und Sachen aus.

Berechnung[Bearbeiten | Quelltext bearbeiten]

Siehe auch: Linearbewegung

Die Beschleunigung ist die Geschwindigkeitsänderung pro Zeitintervall. Sie lässt sich besonders einfach im Spezialfall der geradlinigen Bewegung mit konstanter Beschleunigung berechnen. Wenn die Geschwindigkeiten zum Zeitpunkt sowie zum Zeitpunkt bekannt sind, berechnet sich die Beschleunigung innerhalb der Zeitspanne aus der Differenz der Geschwindigkeiten gemäß

Bei einer konstanten Beschleunigung, die nicht in Richtung des Geschwindigkeitsvektors erfolgt, muss die Differenz der Geschwindigkeiten vektoriell bestimmt werden, wie in der Abbildung veranschaulicht. Wenn sich die Beschleunigung während der betrachteten Zeitspanne ändert, erhält man mit obiger Rechnung die mittlere Beschleunigung, auch Durchschnittsbeschleunigung genannt.

Um die Beschleunigung für einen bestimmten Zeitpunkt statt für ein Zeitintervall zu berechnen, muss man vom Differenzenquotienten zum Differentialquotienten übergehen. Die Beschleunigung ist dann die erste zeitliche Ableitung der Geschwindigkeit nach der Zeit:

Da die Geschwindigkeit die Ableitung des Ortes nach der Zeit ist, kann man die Beschleunigung auch als zweite Ableitung des Ortsvektors darstellen:

Die zeitliche Ableitung der Beschleunigung (also die dritte Ableitung des Ortsvektors nach der Zeit) wird Ruck genannt:

Beispiele zur Berechnung über die Geschwindigkeit[Bearbeiten | Quelltext bearbeiten]

Ein Auto bewegt sich zum Zeitpunkt mit einer Geschwindigkeit von über die Straße (das sind 36 km/h). Zehn Sekunden später, zum Zeitpunkt , beträgt die Geschwindigkeit (das sind 108 km/h). Die durchschnittliche Beschleunigung des Autos in diesem Zeitintervall war dann

.

Die Geschwindigkeit hat also pro Sekunde durchschnittlich um 2 m/s (also um 7,2 km/h) zugenommen.

Ein PKW, der vor der roten Ampel innerhalb von von „Tempo 50“ () auf Null abgebremst wird, erfährt die Beschleunigung

.

Einheit der Beschleunigung[Bearbeiten | Quelltext bearbeiten]

Die Maßeinheit für die Angabe einer Beschleunigung ist standardmäßig die Einheit Meter pro Quadratsekunde (m/s2), also (m/s)/s. Allgemein können Belastungen technischer Geräte oder die Angabe von Belastungsgrenzen als g-Kraft, also als „Kraft pro Masse“, erfolgen. Diese wird als Vielfaches der normalen Erdbeschleunigung (Normfallbeschleunigung) g = 9,80665 m/s2 angegeben. In den Geowissenschaften ist daneben auch die Einheit Gal = 0,01 m/s2 gebräuchlich.

Umgangssprachliche Verwendung[Bearbeiten | Quelltext bearbeiten]

Der Begriff Beschleunigung wird umgangssprachlich nicht nur dann benutzt, wenn sich die „Geschwindigkeitszunahme“ auf eine räumliche Geschwindigkeit bezieht, sondern allgemein auf Prozesse, die „schneller werden“ und sich damit „beschleunigen“. Mit Beschleunigung kann dabei zum Beispiel die zweite zeitliche Ableitung einer dimensionslosen Größe oder auch die erste zeitliche Ableitung einer Frequenz oder Wachstumsrate gemeint sein.

Beispiele:

Bei Kraftfahrzeugen wird die erreichbare positive Beschleunigung als ein wesentlicher Parameter zur Klassifizierung der Leistung verwendet. Angegeben wird meist ein Mittelwert in der Form „In … Sekunden von 0 auf 100 km/h“ (auch 60, 160 oder 200 km/h).

Messung der Beschleunigung[Bearbeiten | Quelltext bearbeiten]

Es gibt prinzipiell zwei Möglichkeiten, Beschleunigungen zu messen oder anzugeben. Die Beschleunigung eines Objekts kann kinematisch bezüglich eines Weges (Raumkurve) betrachtet werden. Dazu wird die Momentangeschwindigkeit bestimmt, ihre Änderungsrate ist die Beschleunigung. Die andere Möglichkeit ist, einen Beschleunigungssensor zu verwenden. Dieser bestimmt mit Hilfe einer Testmasse die Trägheitskraft, aus der dann mit Hilfe der newtonschen Grundgleichung der Mechanik auf die Beschleunigung geschlossen wird.

Zusammenhang zwischen Beschleunigung und Kraft[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Newtonsche Gesetze

Isaac Newton beschrieb als Erster, dass zum Auftreten einer Beschleunigung eine Kraft notwendig ist. Sein Gesetz beschreibt die Proportionalität von Kraft und Beschleunigung für Körper in einem Inertialsystem. Ein Inertialsystem ist ein Bezugssystem, bei dem sich kräftefreie Körper geradliniggleichförmig bewegen. Die Beschleunigung ist dann das Verhältnis von Kraft zu Masse

Soll die Beschleunigung in einem beschleunigten Bezugssystem berechnet werden, so sind zusätzlich Trägheitskräfte zu berücksichtigen.

Rechenbeispiel zur Messung über die Trägheit[Bearbeiten | Quelltext bearbeiten]

In einem Aufzug befindet sich eine Federwaage, an der eine Masse von einem Kilogramm hängt (). Wenn der Aufzug im Vergleich zur Erde ruht, so zeigt die Waage eine Gewichtskraft von 9,8 Newton an. Der Betrag der Schwerebeschleunigung beträgt demnach

Zeigt die Federwaage einen Moment später zum Beispiel eine Kraft von 14,7 Newton an, so ist die Beschleunigung des Aufzugs 4,9 m/s2 im Vergleich zur Erde nach oben.

Beschleunigung entlang eines Weges[Bearbeiten | Quelltext bearbeiten]

Allgemeine Beschreibung[Bearbeiten | Quelltext bearbeiten]

Die Beschleunigung eines Körpers, der sich entlang eines Weges (einer Raumkurve) bewegt, lässt sich mit den Frenetschen Formeln berechnen. Dies ermöglicht eine additive Zerlegung der Beschleunigung in eine Beschleunigung in Bewegungsrichtung (Tangentialbeschleunigung) und eine Beschleunigung senkrecht zur Bewegungsrichtung (Normalbeschleunigung oder Radialbeschleunigung).

Der Vektor der Geschwindigkeit kann als Produkt aus seinem Betrag und dem Tangenteneinheitsvektor dargestellt werden:

Der Tangenteneinheitsvektor ist ein Vektor der Länge , der an jedem Punkt des Weges die Richtung der Bewegung anzeigt. Die Ableitung dieses Ausdrucks nach der Zeit ist die Beschleunigung:

Die zeitliche Ableitung des Tangenteneinheitsvektors kann über die Bogenlänge berechnet werden:

Dabei führt man den Krümmungsradius und den Normaleneinheitsvektor ein. Der Krümmungsradius ist ein Maß für die Stärke der Krümmung und der Normaleneinheitsvektor zeigt senkrecht zur Bahnkurve in Richtung des Krümmungsmittelpunkts. Man definiert die Tangentialbeschleunigung und Radialbeschleunigung so:

Die Beschleunigung lässt sich damit in zwei Komponenten zerlegen:

Ist die Tangentialbeschleunigung Null, so ändert der Körper nur seine Bewegungsrichtung. Der Betrag der Geschwindigkeit bleibt dabei erhalten. Um den Betrag der Geschwindigkeit zu ändern, muss also eine Kraft wirken, die eine Komponente in Richtung des Tangentialvektors besitzt.

Zentrifugalbeschleunigung[Bearbeiten | Quelltext bearbeiten]

Siehe auch: Gleichförmige Kreisbewegung und Zentrifugalbeschleunigung

Ein Sonderfall obenstehender Überlegung ist eine Kreisbewegung mit konstantem Geschwindigkeitsbetrag. In diesem Fall ist die Beschleunigung nach innen auf den Kreismittelpunkt hin gerichtet, also immer senkrecht zur momentanen Bewegungsrichtung auf der Kreisbahn. Dieser Sonderfall einer reinen „Querbeschleunigung“ heißt Zentripetalbeschleunigung. Durch sie wird nicht der Betrag der Geschwindigkeit verändert, sondern nur deren Richtung, was eben gerade eine Kreisbahn ergibt. Bezüglich eines mitrotierenden (und daher beschleunigten) Bezugssystems wird ein Objekt vom Mittelpunkt weg nach außen beschleunigt, dann wird die Bezeichnung Zentrifugalbeschleunigung verwendet.

Eine Zentrifuge nutzt diesen Effekt, um Dinge einer konstanten Beschleunigung auszusetzen. Der Krümmungsradius entspricht dabei, da es sich um eine Kreisbewegung handelt, dem Abstand des Zentrifugiergutes zur Drehachse. Die Beschleunigung, der das Zentrifugiergut der Bahngeschwindigkeit ausgesetzt ist, lässt sich dann auch durch die Winkelgeschwindigkeit ausdrücken:

Negative und positive Beschleunigung[Bearbeiten | Quelltext bearbeiten]

Bei einem Körper, der sich entlang einer Linie bewegt, wird der Tangenteneinheitsvektor üblicherweise in Bewegungsrichtung gewählt. Ist die Tangentialbeschleunigung negativ, so verringert sich die Geschwindigkeit des Körpers. Bei Fahrzeugen spricht man von einer Verzögerung oder Bremsung des Fahrzeugs. Wird in diesem Zusammenhang der Begriff Beschleunigung gebraucht, so ist meist eine positive Tangentialbeschleunigung gemeint, die die Geschwindigkeit des Fahrzeugs erhöht.

Anwendung von Beschleunigungsmessungen[Bearbeiten | Quelltext bearbeiten]

Wenn die Anfangsgeschwindigkeit und -position bekannt sind, ermöglicht die kontinuierliche Messung der Beschleunigung in allen drei Dimensionen eine Positionsbestimmung zu jedem Zeitpunkt. Die Position lässt sich daraus einfach durch zweifache Integration über die Zeit bestimmen. Für den Fall, dass beispielsweise das GPS-Gerät eines Flugzeugs ausfällt, ermöglicht diese Methode eine relativ genaue Ortsbestimmung über einen mittellangen Zeitraum. Ein Navigationssystem, das die Position durch Messung der Beschleunigung bestimmt, heißt Trägheitsnavigationssystem.

Beschleunigung und Potential[Bearbeiten | Quelltext bearbeiten]

Beschleunigungsfeld und Potential[Bearbeiten | Quelltext bearbeiten]

Ist eine Kraft auf ein Teilchen proportional zu seiner Masse, dies ist zum Beispiel bei der Gravitation der Fall, so lässt sie sich auch durch ein Beschleunigungsfeld beschreiben. Dieses Vektorfeld ordnet jedem Ort im Raum eine Beschleunigung zu. Es lässt sich häufig als Gradient eines Potentials

Geometrische Konstruktion der Differenz der Geschwindigkeitsvektoren
Tangenteneinheitsvektor und Normaleneinheitsvektor bei einer Raumkurve
Zweidimensionaler Querschnitt durch ein Gravitationspotential einer homogenen Kugel. Die Wendepunkte befinden sich an der Oberfläche der Kugel.

Сьюзан, - позвал он, задыхаясь.  - Ты должна помочь мне выбраться отсюда. Она ничего не понимала. Все это было лишено всякого смысла. - Сьюзан, ты должна мне помочь.

0 comments

Leave a Reply

Your email address will not be published. Required fields are marked *